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The motion of a heavy uniform thin-walled ellipsoid of revolution, completely filled with an ideal incompressible liquid, performing 
uniform vortex motion is investigated. It is assumed that the ellipsoid is situated on a horizontal plane, from the side of which 
a normal reaction and a force of viscous sliding friction act on it. The equations of motion of  the system, suitable both in the 
general case and in limiting cases of zero ellipsoid mass or zero liquid mass, are set up. Steady and periodic motions of the ellipsoid 
with the liquid are obtained. The conditions for uniform rotations of the ellipsoid about a vertically situated axis of symmetry 
to he stable are obtained. © 2003 Elsevier Science Ltd. All rights reserved. 

It is well known that an absolutely solid axisymmetric ellipsoid (without a liquid) situated on a horizontal 
plane with sliding friction (a special case of a Chinese top) can rotate with arbitrary constant angular 
velocity around a vertically situated axis of symmetry, in which the rapid rotations of an oblate ellipsoid 
are unstable, and those of a prolate ellipsoid are stable (see [1-3]). The stability of uniform rotations 
of an axisyrnmetrical ellipsoid filled with liquid, executing uniform vortex motion, on a horizontal plane 
was previously investigated in the cases of absolutely smooth and absolutely rough planes [4], and also 
in the case of a plane with sliding friction, if the mass of the envelope is negligibly small [5]. Below we 
investigate the general case when the mass of the envelope cannot be neglected. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider the motion of a heavy uniform thin-walled axisymmetrical ellipsoid, completely filled with an 
ideal incompressible liquid, which performs uniform vortex motion, on a horizontal plane taking viscous 
sliding friction into account. Obviously the centre of mass of the system and the principal central axes 
of inertia coincide with the centre S of the ellipsoid and its principal axes Sxlx2x3 respectively. 

Suppose rn is the mass of the system (m(1 - e) is the mass of the ellipsoid, me is the mass of the 
liquid, and e ~ [0, 1]), dx,d2 = dl and d3 are the semi-axes of the ellipsoid, 8 = dl/d3,gd3 is the acceleration 
due to gravity, d3oi, col, f2i and Yi (i = 1, 2, 3) are the projections of the velocity of the centre of mass 
of the ellipsoid, of the angular velocity, of half the vortex vector and of the unit vector of the ascending 
vertical, respectively, onto the Sxi axis (i = 1, 2, 3), nd3 is the value of the normal reaction, referred to 

the mass of the system, × > 0 is the coefficient of viscous sliding friction and r = ~/52(~ + ~ )  + ~3 

(d3r is the distance from the centre of the ellipsoid to the ellipsoid to the reference plane). 
The equations of motion of the system, referred to the system of coordinates Sxlx2x3 have the form 

(compare with the equations of motion of the system considered previously in [5]) 

0.1 + 0 ) 2 ° 3 -  ¢03u2 = ( n -  g)YI - x[u l  + (82CO33'2 - ¢°2Y3) r - I  ] 

0"2 + ¢0~1 - ¢Olu 3 = (n - g)Y2 - x[o 2 + (¢01Y3 - 82(03"/I ) r - I  ] 

63  + cod  2 - °3201 = (n - g)Y3 - x[u 3 + 82 (co2YI - coIY2 ) r - I  ] 

(1.1) 
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[ +16 8 2 - 1 ] 
(1 - I~) j + (--1) j+l (fl3_j(O 3 + 

3 3 

+ g I ~ ( ( b j  482 " ] 
L5(i5 +1) - ( - l ) J+ l ( °3 - j ( °3 ) l  5 ( ~ 7 1 )  (~'~j -(-1)J+l~~3-Jt'~3)+(-1)J+i 2~25 fD3-Jt")3 = 

= - ( -  1) j+l ( 82 - 1)nT3-jT3 r-I  + g[(- l)  j+l ( 82v 3T3-j - u  3-j"/3)r + 

+(-1)J+l~4(to2T1 - tOlT2)T3_ j - (t,0jT 3 - ~20.)3Tj)T3]r-2, j = 1 , 2  

5(82 + I) ( ~ 2  

= ~[(u 2Y1 - v  IY2)r + (~?h  + 02T2)¥3 - 82~3(T~ + 7~)lr -2 

g[~j  +( -1)  j+l 282 "¢0 -~'-~+1 ( 3_j -~'~3_j)~"~3 -(-1)J+l(o,)3-L'~3)~-'~3_j]=O, j=l,2 

~[t~3 + ~ +  1 ( o , ,  2 - % , , ) ] =  0 

'yi + (D2T3 - (03T2 = 0, "~2 + (03TI - O)IT3 = 0, "~3 + O)IT2 - t.02TI -- 0 

u lY I +u 272 +u 3)'3 + ( 82 - 1)((0271 - (OIY2)T3 r-i = 0 

(1.2) 

(1.3) 

(1.4) 
(1.5) 

Equations (1.1) and (1.2) express the theorems of the change in the momentum and angular 
momentum of the system, Eq. (1.3) expresses Helmholtz'  theorem, Eq. (1.4) expresses the condition 
for the unit vector of the ascending vertical to be constant in a fixed system of coordinates, while Eq. 
(1.5) expresses the condition for undetached motion of the ellipsoid on the plane. System (1.1)-(1.5) 
is closed with respect to the variables o i, mi, ~-2i, ~/i (i = 1, 2, 3) and n. 

When e = 1 (the mass of the ellipsoid is zero) Eqs (1.1)-(1.5) become the equations of motion of a 
massless ellipsoid filled with liquid, and when e = 0 (the mass of the liquid is zero) Eqs (1.1)-(1.5) become 
the equations of motion of a hollow ellipsoid (in this case, obviously, Eqs (1.3) must be discarded). The 
case when e = 0 is a special case of a Chinese top, while the case when e = 1 was investigated in [5]. 
In general, system (1.1)-(1.5) allows of two first integrals (Helmholtz and geometric) 

~2 + f22 + 8 2 ~  = const, T~ + ),2 + ./2 = 1 (1.6) 

by means of which one can eliminate the variables g23 and ¥3. The variables o3 and n can also be 
eliminated using the third equation of system (1.1) and the constraint equation (1.5). 

2. S T E A D Y  AND P E R I O D I C  M O T I O N S  

Equations (1.1)-(1.5) obviously allow of steady motions of the form 

ol =v2 =u3 =TI =T2 =co~ =to  2 =f~l = ~ 2  = 0  

Y3 = +I, o 3 = to, ~3 = ~ 

(2.1) 

(a) and g2 are arbitrary constants; here n = g) and of the form 

ul =v2 =u3 =Y3 =t% = f l  3 =0,  Yl =sinq~, Y2 =cosq~ (2.2) 

% = wv,, taj = wv , j = 1,2 

(w, W and ~p are arbitrary constants; here, as before, n = g). These solutions correspond to uniform 
rotations of the ellipsoid about a vertically situated axis of symmetry (solution (2.1)) or a vertically 
situated diameter of the equatorial cross-section (solution (2.2)). 

It can easily be verified that Eqs (1.1)--(1.5) allow of periodic motions of the form 
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ol=-&oV2, u2=rxoYl, u3=0 
Yl : sin(tot + q0, Y2 : cos(tot + q~), Y3 = 0 

to )=0 ,  to3 =t°, fly=t'l~/j, fl3 =0;  j = l , 2  

(2.3) 

(03, if2 and ~ are arbitrary constants; n = g). These solutions correspond to uniform rollings of the ellipsoid 
along a straight line; in this case the axis of symmetry of the ellipsoid is horizontal (as for solutions 
(2.2)). 

Using the method proposed in [5] it can be shown that Eqs (1.1)-(1.5) also allow of periodic motions 
of the form 

Tl = 4 1 - T  2 sin[ti~t +tp], Y2 = i l - Y  2 cos[tilt + till, Y3 =Y 

~ : ( 1 - 5 2 ) t t y t ;  u ) : u  2 : v  3 : 0  ( n = g )  

toj ---- 52to'~j, 0')3 = 0~ ,  ~'~j = I t 5 2 ~ j  , f l3  = t2"t; j : 1, 2 

(It = 282to[(52 - l)f~ + 52 (82 + 1)(0] -1 ) 

(2.4) 

Here 03, f2 and y( ]y[ ~< 1) are constants, connected by the relation 

158 6ok 2 + (I - 52)(5 - 8¢)k - 5215(82 + I) - 2¢(82 + 4)] 
. . . . .  k = - -  (2.5) 

to254482(I  '-- V2)-I-'~ 2 ( | - 8 2 ) k -  52(82 + l) ' 0 

where <p is an arbitrary constant. These solutions correspond to regular precessions of the ellipsoid and 
is transformed into uniform rotations (2.1) or (2.2) where yz = 1 or y = 0 respectively (in the second 
case w = 5203, W = 2k8403[k(8 2 - 1) + 62(8 2 + 1)]-1). When E = 1 relation (2.5) is identical with the 
corresponding relation obtained previously in [5], and when E = 0 it takes the form 

3g : to254482(I  -- y 2 ) +  y2 

and defines the relation between the constants co and y in the regular precessions of a hollow ellipsoid 
on a horizontal plane with friction. When k = 1 (f2 = 03) the right-hand side of relation (2.5) takes the 
f o r m  

(5 - 2e)84 + 2(5 - 8E)52 - (5 - 2e) 

84 + 252 - 1 (2.6) 

Taking into account the fact that its left-hand side is positive, we conclude that regular precessions of 
an ellipsoid filled with liquid, of  the form (2.4) (when f~ = 03) only exist when the quantity (2.6) is positive. 

If 8 2 > ~ - 1 or 8 2 < '~" - 1, this condition is satisfied when 8 2 > 802(e) or 8 2 < 82(e) respectively, 
where 

8o2 (~) = -5 + 88 + 4 5 0 -  l OOe + 68r 2 
5 - 2 e  

The function 82(e) obviously increases monotonically in the section [0, 1], where 

5 (o) = A - - l ,  ,, 5 (l) = l 

(2.7) 

Hence, in the case of an oblate ellipsoid (8 > 1) regular precessions (2.4) (f2 --- 03) exist for 
any oblateness (V8 > 1), if the mass of the liquid is no greater than 5/8 of the mass of the system 
(0 ~ e ~< 5/s), and only in the case of considerable oblateness (8 > fi0 > 1) in the opposite case 
(1 1> e > 5/8). In the case of  a prolate ellipsoid (fi < 1) regular precessions (2.4) (g2 = 03) exist for any 
ratio of the mass of  the liquid to the mass of  the system (Ve ~ [0, 1]) for an extremely prolate ellipsoid 
(8 2 < "~" - 1), and only provided the mass of the liquid is less than 5/8 of the mass of the system 
(0 ~< e < 5/s), for a slightly prolate ellipsoid (1 > 8 > 80). 
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In particular where e = 0 (a hollow ellipsoid) regular precessions exist for any ellipsoid of revolution, 
and when E ~ 1 (a massless ellipsoid, filled with liquid) they only exist for a very oblate ellipsoid 
(82 > "~  + ~j or a very prolate ellipsoid (82 < ~/~ - 1) (compare with the results for the cases of a 
solid ellipsoid without a liquid [2] and a massless ellipsoid filled with liquid [5]). 

3. THE STABILITY OF UNIFORM ROTATIONS OF THE ELLIPSOID 
ABOUT THE AXIS OF SYMMETRY 

We will consider steady motion (2.1) and write linearized equations of the perturbed motion in its 
neighbourhood, assuming 

'Y3 = l+y~, n = g + n ' ,  0")3 = ¢'O + tot3 ' ~"~3 = ~"~ + ~"~3 

and retaining the previous notations for the remaining variables vi (i = 1, 2, 3), yi, (o r and ~ / ( j  = 1, 2). 
Eliminating the variables y~, o3, n' and f2~ using relations (1.5) and (1.6) and the third equation of system 
(1.1), we obtain after simple but fairly lengthy calculations, 

Tj -- (--1)J+l(OY~3-j + ~3-j) =0, j = 1,2 (3.1) 

~ / _  (_l)J+l(O~Q3_j (52 _ I 2(52 + ~--~+ l t ' ~ 3 _ / -  ~/--~ nto3_j) = O, j = l , 2  (3.2) 

V'j -(-1)J+I~v3_j -)'XUj +(-1)J+lx~t~2T3_y -(-1)J+lx~3_y =0, j = l , 2  (3.3) 

5 8 2 + I  ,['82+I • ] 
"3 8 2 - i (I - e~ ~"L~" % + ( -  l)j+1 ox%_~., + ~ - ( -I )  j+~ ~ 3 - j  + 

82 +I 
+5x (gi'~ 132 toj + (-1)~+l 8~+21 ~'Q0)3=) - 5x 82 (82 + 1) .. (82 _1)2 urr~ + 

:+I [" (52+I 4(52 _ (52+i I 
+(-I)' =o, j = 1, 2 (3.4) 

o)3 = o (3.5) 

Equation (3.5) is clearly separated from system (3.1)-(3.4), and the zero root of the characteristic 
equation for system (3.1)-(3.5), related to the arbitrariness of the parameter to in solution (2.1), 
corresponds to this equation. Hence, the stability of this solution depends on the roots of the charac- 
teristic equation for system (3.1)-(3.4). 

Assuming 

x=(y l  +iT2)e i~, y=(f21 + i~2)e  i~ 

Z=(O~ 1 +i02)e i~, v =(v ! +iv2)e  i°~ 

we can reduce the eight-order system (3.1)-(3.4) in terms of eight real variables to a fourth-order system 
in four complex variables x, y, z and v 

.~-iz=O 

• . 8 ~ - 1 ~  . 8 2 
y + ~ ~r-~-~ L~y - 2, g-f-~ ~ =0 

+ x v  - izo~2 x + ixz = O 
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8 . 2 84+882+1]. [ i~2(3E(82-1)2, , . ,  

. . .  1 2 .  82(8 2 - 1) , . ,  
-3[xt t~ 2 + i(8 2 - l)glx - - ~ t e  (8 2 + 1) 2 Lzy - 3ixv = 0 

Suppose f2 = 60. Then the characteristic equation of system (3.6) has the form 

f (~ )  = P0 ~'4 +(Pl +iq~) ~'3 +(P2 +iq2) ~'2 +(,o3 +iq3)~'+iq4 = 0 

pk=ak+O~ke,  k=0,1,2 ,3;  qj=bj+fIjE, qj+2=bj+2; j = l , 2  

_ b I (8 2+1) 2 (8 2+1)(82+4)  
a 0 - - ~ = 3 ( 8 2 _ 1 )  2 '  a l = ×  3(82_1)2 

82+1 2 8 2 2 [-82+1 5 82 ...2] 

a':,=~"'~_lg+~'~"~_l~, j 
2x~264 + / i  '~ + 2) 

b 2 = - 3 ( 8 2  _ 1) 2 , b 3 = tog ,  b 4 = 60g'~t 

Ot ° = 0t__LI = _ I)..k _ 132 2 8 4  + 8 ~  2 + 1 

x x - - ~ "  = - 1-~ ( 8  2 - l )  2 

ot 3 = 4 8 2 
Ot 2 = _  8 2  602 

x 15  - 1  

(3.6) 

(3.7) 

The permanent  rotations (2.1) (f2 = 60) are obviously stable and also are asymptotically stable with 
respect to all the variables, apart, generally speaking, from the variables £23 and 603, if all the roots of  
Eq. (3.7) lie in the left half-plane, and unstable if at least one root lies in the right half-plane. 

All the roots of Eq. (3.7) have negative real parts if and only if the matrix 

Po -ql -P2 q3 0 0 0 

0 Po -ql -P2 q3 0 0 

0 0 Po -ql -P2 q3 0 

0 0 0 Pl -q2 -P3 q4 

0 0 Pl -P2 -P3 q4 0 

0 Pl "q2 -P3 -q4 0 0 

Pl -q2 -P3 -q~ 0 0 0 

(3.8) 

is innerly positive [6]. The conditions for matrix (3.8) to be innerly positive have the form 

(82 - 1){15(6 2 + 1)215(8 4 + 58 2 + 4) - 2(8 4 + 88 2 + 1)e]g - 

-840}21125(82 + 1) 3 - 10(786 + 6384 + 7582 + 55)£ + 8(86 + 1584 + 5782 + 7)E 2 ] } > 0 (3.9) 

(82 - 1){1125(82 + 1)Sg 3 - 75(82 + 1)284g2¢0215(82 + l) 3 - 2(86 + 984 + 982 + 37)e]-  

-12084960415(84 + 282 - 1)(284 + 82 - 4) - 2(288 + 1786 + 584 + 382 + 1)e]e - 

-8886061125(84 + 282 - 1) - 10(784 + 4482 - 7)e + 8(84 + 882  -- 1)E: 2 ]g} > 0 (3.10) 

(52 - 1){15(84 + 282 - 1)g - 84602[5(84 + 282 - 1)-  2(84 + 882 - 1)e] }e > 0 (3.11) 

Hence, when inequalities (3.9)-(3.11) are satisfied, the uniform rotations (2.1) are stable, and also 
asymptotically stable with respect to a part of the variables. If at least one of these inequalities is strictly 
violated, the uniform rotations (2.1) are unstable. 
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4. A N A L Y S I S  O F  T H E  R E S U L T S  

An investigation of inequalities (3.9)-(3.11) shows that the stability of uniform rotations (2.1) (~  = co) 
depends considerably on the parameter ~ ~ [0, 1], characterizing the ratio of the mass of the liquid to 
the mass of the whole system. 

If the liquid is fairly heavy (~/> s/8), uniform rotations of a prolate ellipsoid (8 < 1) are unstable for 
any angular velocity, while uniform rotations of a slightly oblate ellipsoid (1 < 8 ~< 80(E)) are stable 
for any angular velocity; uniform rotations of an extremely oblate ellipsoid (8 > 80(E)) are stable for 
low angular velocities ({o 2 < {o~(e)) and unstable for high angular velocities (o) 2 > {o0a(~)). Here 
80(e) is given by formula (2.7) while 

0)2o(8) = 3g 5(84 + 2 8 2  - I) (4.1) 
~ =  5(84 + 282 - I) - 2(84 + 882 - I)8 

If the liquid is fairly light (0 < ~ < 5/8), uniform rotations of an oblate ellipsoid (8 > I) are stable 
or unstable for low or high angular velocities ((02 < {o2(~) or (o 2 > {o2(e)) respectively, uniform rotations 
of a sli.gl.2!ly prolat2e ellipsoid (80(e) < 8 < i) are stable or unstable for high or low angular velocities 
(0) 2 > 0)0(~) or co < 0)0(e)) respectively, while uniform rotations of an extremely prolate ellipsoid 
(8 < 80(8) < i) are unstable for any angular velocity. Obviously, a change in the stability of uniform 
rotations (2.1) (f2 = co) for critical values of the angular velocity (4.1) is related to the onset of regular 
precessions (2.4) (~  = 0)) of the ellipsoid (Andronov-Hopf bifurcation [7]). 

In Fig. I (5/8 ~< E < I) and Fig. 2 (0 < E < 5/8) we show regions of stability (hatched) and instability 
of uniform rotations (2.1) (f2 = {o) as a function of the degree of oblateness (prolateness) of the ellipsoid 
and of its angular velocity. Note that the vertical asymptote 8 = 80(E) of the curvilinear boundary of 
the stability region, specified ~ formula (4.1), approaches the straight line 8 = ~2  + 1 as ~ --) I - 0, 
8 = i as e --) 5/8 and 8 = ~/2 - I as ~ ~ +0. Hence, the region of stability, indicated in Fig. I 
(s/8 ~< E < i), transfers continuously as ~ --) 1 - 0 into the region of stability [5] of uniform rotations of 
a massless ellipsoid (e = i) filled with a liquid. 

i 

8o(~) ,/2+ l 8 
Fig. I 

0) 2 

I 

I 

I 

I 

o ~ - I ~ (e )  I 8 

Fig. 2 
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3g . . . . . .  

0 6 

Fig. 3 

As e -~ +0 no such continuous transfer is observed: in Fig. 3 we show the region of stability of uniform 
rotations of a hollow ellipsoid (containing no liquid); the curvilinear boundary of this region is defined 
by the relation to2 = 3g/84 [1-3]. Hence, the presence of even a light liquid (0 < e ~ 1) somewhat expands 
the region of stability of uniform rotations (2.1) (f2 = to) of an oblate ellipsoid and sharply narrows 
the region of stability of these rotations of a prolate ellipsoid (compare Figs 2 and 3). This difference 
in the stability regions when e = +0 (there is a liquid in the cavity but it is very light) and e = 0 (there 
is no liquid in the cavity) is completely explicable. In the second case (e = 0) we must discard Eqs (1.3) 
and of course also Eqs (3.2), the second equation of system (3.6), etc. 

Note also that this difference can also be explained strictly mathematically. When E = 0 the left-hand 
side of inequality (3.11) vanishes. Consequently, the characteristic equation (3.7), which can be 
represented in the form 

fo(~,) + e/i (~,) = 0 

fo = ao ~,4 +(al  +ibi) ~3 +(°-2 + ib2)k 2 +(a3 +ib3)k+ib4 

fl =aO ~'4 +(al + i1~1) ~'3 +(a2 +i~2)~ 2 +a3~ 

(4.2) 

has a pure imaginary root ~,0 when e = 0. This root is easily obtained: ~.0 = -/co( 62 - 1)/( 62 + 1) 
(fo(~.o) = 0). When 0 < e '~ 1, Eq. (4.2) has a root ~,(e) = ~,o + e~,l + .... where ~,1 = -flQ.o)/f~(~,o) = 

+ iTI (the prime denotes a derivative with respect to ~.). Calculating ~,1, we have 

8~4ta6(1 - 282 - 84)  

= 5(82 +I)5(A 2 +B 2) 

A_- x [3(82 + 1)2g- 2tO2(384 +482 -2)]  
3(82 - 1)(82 + 1) 

B = ~ [ - 3 ( 8 2  + l)g + t02(382 - 1)] 

Hence, if 62 < ~ -  - 1, then ~ > 0 and the root ~(~) has a positive real part of the order of e. 
Consequently, the presence of even a light liquid in the cavi.ty leads to Lyapunov instability of all the 
uniform rotations of an extremelY2Prolate ellipsoid (62 < ~ - 1). However, if the angular velocity of 
the ellipsoid is sufficiently high (co > 3g/64), then when 0 < e ~ 1 all the remaining roots of Eq. (4.2) 
have negative real parts and, in times of the order of l/e, perturbed motions of the ellipsoid are close 
to unperturbed motion. 
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